Learning Deep Representations for Graph Clustering
نویسندگان
چکیده
Recently deep learning has been successfully adopted in many applications such as speech recognition and image classification. In this work, we explore the possibility of employing deep learning in graph clustering. We propose a simple method, which first learns a nonlinear embedding of the original graph by stacked autoencoder, and then runs k-means algorithm on the embedding to obtain clustering result. We show that this simple method has solid theoretical foundation, due to the similarity between autoencoder and spectral clustering in terms of what they actually optimize. Then, we demonstrate that the proposed method is more efficient and flexible than spectral clustering. First, the computational complexity of autoencoder is much lower than spectral clustering: the former can be linear to the number of nodes in a sparse graph while the latter is super quadratic due to eigenvalue decomposition. Second, when additional sparsity constraint is imposed, we can simply employ the sparse autoencoder developed in the literature of deep learning; however, it is nonstraightforward to implement a sparse spectral method. The experimental results on various graph datasets show that the proposed method significantly outperforms conventional spectral clustering, which clearly indicates the effectiveness of deep learning in graph clustering.
منابع مشابه
Detecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملDeep Graph Clustering in Social Network
In this paper, we present deep attributes residue graph algorithm (DARG), a novel model for learning deep representations of graph. The algorithm can discover clusters by taking into consideration node relevance. DARG does so by first learns attributes relevance and cluster deep representations of vertices appearing in a graph, unlike existing work, integrates content interactions of the nodes ...
متن کاملsubgraph2vec: Learning Distributed Representations of Rooted Sub-graphs from Large Graphs
In this paper, we present subgraph2vec, a novel approach for learning latent representations of rooted subgraphs from large graphs inspired by recent advancements in Deep Learning and Graph Kernels. These latent representations encode semantic substructure dependencies in a continuous vector space, which is easily exploited by statistical models for tasks such as graph classification, clusterin...
متن کاملGraph Clustering with Dynamic Embedding
Graph clustering (or community detection) has long drawn enormous aention from the research on web mining and information networks. Recent literature on this topic has reached a consensus that node contents and link structures should be integrated for reliable graph clustering, especially in an unsupervised setting. However, existing methods based on shallow models oen suer from content nois...
متن کاملClustering and Unsupervised Anomaly Detection with L2 Normalized Deep Auto-Encoder Representations
Clustering is essential to many tasks in pattern recognition and computer vision. With the advent of deep learning, there is an increasing interest in learning deep unsupervised representations for clustering analysis. Many works on this domain rely on variants of auto-encoders and use the encoder outputs as representations/features for clustering. In this paper, we show that an l2 normalizatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014